₹715.50 ₹795.00 Save: ₹79.50 (10%)
Go to cartISBN: 9788130927534
Bind: Paperback
Year: 2015
Pages: 718
Size: 185 x 242 mm
Publisher: MV Learning
Exclusive Distributors: Viva Books
Sales Territory: India, Nepal, Pakistan, Bangladesh, Sri Lanka, Bhutan, Myanmar
Description:
It is well known that the foundation and development of statistical theory came up with a search for interpretation of results of research experiments, hence decision making, in biological, agricultural and medical fields. This endeavour gave birth to a new stream of mathematical sciences named statistics.
The present book aims to provide basic knowledge and explain application of biostatistics to master's level students pursuing courses in different disciplines and also to help young researchers. This book effectively summarizes the author's several years? experience of teaching and research.
The author has also drawn ideas from her interaction with researchers in a variety of disciplines such as education, social science, life sciences, agricultural sciences, medical sciences, earth sciences and engineering.
The book covers almost all parts of the recent UGC model syllabus in biological sciences relating to quantitative zoology. It explains how to choose an appropriate statistical analysis method for various biological experimental data.
This book may be used as a textbook by undergraduate and postgraduate students of biostatistics in biological, agricultural and health sciences. It will help researchers in these and other aforesaid disciplines.
Target Audience:
Students of Undergraduate/postgraduate level and researchers in agricultural, biological, medical, earth, social, psychological and pharmaceutical sciences.
Contents:
Preface • Acknowledgements • Abbreviations
Part I: BASIC
Chapter 1 Introduction: Statistics and Biostatistics • Types of Data • Variables and their Types • History and Applications • History • Applications
Chapter 2 Data Handling I: Graphical Methods: Classification and Tabulation • Classification • Frequency Tables • Graphical Methods • Graphical Methods for Qualitative Data • Graphical Methods for Quantitative Data
Chapter 3 Data Handling II: Descriptive Statistics: Measures of Location or Measures of Central Tendency • Measures of Dispersion • Measures of Skewness and Kurtosis • Moments • Sheppard Correction for Moments • Measures of Skewness and Kurtosis • Absolute Measures of Dispersion
Chapter 4 Concepts of Probability: Uncertainty and Random Experiments • Sample Space and Events • Definition of Sample Space • Definition of Events • Types of Events (Definitions) • Definitions of Probability • Classical Definition • Statistical Definition • Axiomatic Definition of Probability • Additive Rule of Probability • Multiplicative Rule • Conditional Probability • Independent Events • The Bayes Rule or Bayes Theorem
Chapter 5 Random Variables and their Characteristics: Definition and Types of Random Variables • Definition of Random Variable • Types of Random Variables • Functions for Probability Distribution of a Random Variable • Probability Mass Function (pmf) • Probability Density Function (pdf) • Probability Distribution of Random Variable • Cumulative Distribution Function (cdf) • Joint pmf, Joint pdf, Marginal and Conditional pdf and Independent Random Variables ?Joint pmf and Joint pdf • Marginal and Conditional Distributions • Independent Random Variables • Expected Values of Random Variables and their Rules • Rules for the Expected Values • Expected Values of Function of Random Variables • Generating Functions • Probability Generating Function • Moment Generating Function • Characteristic Function • Raw and Central Moments • Raw Moments • Central Moments • Coefficients of Skewness and Kurtosis
Chapter 6 Distributions: Discrete and Continuous Distributions • Binomial Distribution • Properties of Binomial Distribution • Poisson Distribution • Properties of Poisson Distribution • Hypergeometric Distribution • Properties of Hypergeometric Distribution • Geometric Distribution • Properties of Geometric Distribution • Negative Binomial Distribution • Properties of Negative Binomial Distribution • Normal Distribution • Properties of Normal Distribution • Uniform and Rectangular Distributions • Properties of Rectangular Distribution • Bivariate Normal Distribution • Chi-square Distribution • Properties of Chi-square Distribution • Student's t-Distribution • Properties of t-Distribution • F-Distribution • Properties of F-Distribution
Chapter 7 Biostatistical Inference: Inference • Examples of Use of Inductive Inference • General Concepts • Estimation • Point and Interval Estimation • Criteria for a Good Estimator • Methods of Estimation • Testing of Hypothesis • Two Types of Errors • Procedure of Testing of Hypothesis
Chapter 8 Tests of Significance: One Sample Problems for Testing Mean • Two Sample Problems for Testing Means • One Sample Problems for Testing Variance • Two Sample Problems for Testing Variances • Comparing Several Variances: Bartlett's Test • Comparison of Several Means
Chapter 9 Bivariate and Multivariate Data: Measuring and Testing Relationship: Simple or Pearson's Product Moment Correlation Coefficient • Simple Linear Regression • Tests of Correlation • Tests of Regression Coefficient • Testing Homogeneity of Correlation and Regression Coefficients • Intraclass and Spearman's Rank Correlation
Chapter 10 Analysis of Categorical Data: Independence and Association: Two Categories: Estimation and Tests of Proportions • Testing Independence and Homogeneity in 2 ?? 2 and r ?? c Contingency Table
Chapter 11 Electronic Data Handling: Introduction to Computers • Man-Machine Communication: Binary Code and High Level Languages • Working on DOS, Windows, MS Office and Computer Networks
Part II: ADVANCED
Chapter 12 Types and Architecture of Studies: Planning of Experiments in Lab and in Fields • Design of Experiments (DoE) • Case-control, Cross Sectional, Longitudinal Studies and Clinical Trials • Observational Cohort Studies and Longitudinal Studies • Clinical Trials • Case-control Studies • Cross-sectional Studies • Advantages and Disadvantages of Various Studies
Chapter 13 Data Collection: Census and Sampling: Census of Human Population and Animal Population • Random Sampling from Theoretical Distribution and from Finite Population • Selection of Random Sample from a Theoretical Distribution • Random Sampling from a Finite Population • Stratified Random Sampling • Cluster Sampling and Area Sampling • Systematic Sampling • Two-stage and Multistage Sampling • Purposive or Judgement Sampling • Snowball Sampling • Probability Sampling
Chapter 14 Analysis of Data: With Violated Assumptions and from Complex Designs: Comparison of Two Means when Variances are Unequal • Comparison of Several Means and Completely Randomised Design • Randomised Block Design • Latin Square Design (LSqD) • Factorial Analysis • 22 Factorial Experiment • p ?? q Factorial Experiment • Nested Designs • BIBD and PBIBD • Balanced Incomplete Block Design (BIBD) • Partially Balanced Incomplete Block Design (PBIBD) • Multiple Comparisons • Equal Number of Replications or Equal Sample Sizes • Unequal Number of Replications or Unequal Sample Sizes • Multiple Comparison in Two Factor ANOVA
Chapter 15 Non-Parametric Methods I: One Sample Tests: Test of Goodness of Fit • Kolmogorov-Smirnov Test • Sign Test • Wilcoxon Signed Rank Test
Chapter 16 Non-Parametric Methods II: Two Sample Tests: Sign Test for Two Samples • Median Test • Wald-Wolfowitz Runs Test • Wilcoxon Signed Rank Test • Wilcoxon-Mann-Whitney U-Test • Kolmogorov-Smirnov Two Sample Test
Chapter 17 Non-Parametric Methods III: k-Sample Tests: Median Test for k-Samples • Kruskal-Wallis k-Sample Test • Friedman's Test for RBD • Median Test for Two-Way Classification • Olmstead-Tukey Corner (or Quadrant Sum) Test of Association • Coefficient of Concordance and Kendall's Tau Coefficient
Chapter 18 Time Series Analysis: Components of Time Series and their Determination • Determination of Components of Time Series • Autocorrelation in Time Series • Stationarity in Time Series, Transformation and Tests of Stationarity • Tests of Stationarity in Time Series • Transformation of Non-Stationary Time Series • Prediction or Forecasting
Chapter 19 Bioassay: Types of Biological Assays, Direct Assays • Direct Assays • Dilution Assays • Indirect Assays and Dose Response Relationship • The Dose Response Regression • Methods of Estimation of Potency • Parallel Line Assay • Slope Ratio Assay • Quantal Response Assays • Probit Analysis • Logit Analysis • Estimation of Potency • Computational Procedure by Probit Analysis
Chapter 20 Multivariate Analysis I: Hoteling's T2 and Mahalanobis D2 • Discriminant Analysis: Classification in Two or More than Two Populations • MANOVA
Chapter 21 Multivariate Analysis II: Principal Component Analysis (PCA) • Factor Analysis • Mathematical Formulation of Factor Analysis Model • Factor Analysis Procedures • Test of Number of Factors • Interpretation of Factors • Factor Rotation • Factor Scores • Cluster Analysis • Distance and Similarity Matrices • Clustering Methods
Chapter 22 Bioinformatics and Computational Biology: Concepts of Bioinformatics: A Digital Laboratory • Databases and Tools of Bioinformatics • Sequence Analysis • Protein Sequences • FASTA and BLAST • Application of Hidden Markov Model (HMM) • Microarray Data • Probabilistic Modelling and Clustering of Microarray Data • Statistical Significance of Search (or Alignment) • Cluster Analysis of Microarray Data
Chapter 23 Computer Techniques: Programming in FORTRAN and C++ • Programming in FORTRAN • Programming in C and C++ • Use of Statistical Packages • SPSS • BMDP • SAS
APPENDICES: Appendix A: Statistical and Mathematical Tables • Appendix B: Mathematical Symbols and Expressions • Appendix C: Basics of Matrix Algebra • Appendix D: Elements of Set Theory
References • Subject Index • Author Index
About the Author:
Manju Pandey, has an M.Sc. and Ph.D. in statistics from the department of statistics, Banaras Hindu University (BHU), Varanasi, India. She served the same department as lecturer for seven years before joining the department of zoology as a reader. She framed a postgraduate course in biostatistics for M.Sc. in zoology and taught it for 25 years. She has also designed a FORTRAN programming course for undergraduate honours studies and taught it for several years.
Manju Pandey has conducted courses on bioinformatics in Mahila Maha Vidyalaya, Banaras Hindu University, Varanasi, MS University, Baroda, and Central University of Jharkhand, Ranchi. She lectured in reliability theory in Marathwada, Amaravati and Jaipur Universities. She also acted as a faculty member for a summer course in biostatistics in Madurai Kamraj University.
She has also headed the department of computer science at BHU and has been a professor of biostatistics. Other publications by the author include an edited volume titled Statistical Advances in Biosciences and Bioinformatics and more than 50 technical papers in various national and international journals.
She has organized three national workshops on biostatistics, a biennial conference of International Biometric Society - Indian Region (IBS-IR) and participated in several international and national conferences in India and abroad.